Abstract:Safe first-order formulas generalize the concept of a safe rule, which plays an important role in the design of answer set solvers. We show that any safe sentence is equivalent, in a certain sense, to the result of its grounding -- to the variable-free sentence obtained from it by replacing all quantifiers with multiple conjunctions and disjunctions. It follows that a safe sentence and the result of its grounding have the same stable models, and that the stable models of a safe sentence can be characterized by a formula of a simple syntactic form.
Abstract:Circumscription and logic programs under the stable model semantics are two well-known nonmonotonic formalisms. The former has served as a basis of classical logic based action formalisms, such as the situation calculus, the event calculus and temporal action logics; the latter has served as a basis of a family of action languages, such as language A and several of its descendants. Based on the discovery that circumscription and the stable model semantics coincide on a class of canonical formulas, we reformulate the situation calculus and the event calculus in the general theory of stable models. We also present a translation that turns the reformulations further into answer set programs, so that efficient answer set solvers can be applied to compute the situation calculus and the event calculus.