Abstract:Despite being the source region of severe weather hazards, the quantification of the fast current of upward moving air (i.e., updraft) remains unavailable for operational forecasting. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from 3-dimensional (3D) gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory's convection permitting Warn on Forecast System (WoFS). A parametric regression technique using the Sinh-arcsinh-normal (SHASH) distribution is adapted to run with UNets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65 and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50%. Meanwhile, the area of the 5 and 10 m s-1 updraft cores show an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity which could be useful in assessing a storm's severe potential.
Abstract:Over the past decade the use of machine learning in meteorology has grown rapidly. Specifically neural networks and deep learning have been being used at an unprecedented rate. In order to fill the dearth of resources covering neural networks with a meteorological lens, this paper discusses machine learning methods in a plain language format that is targeted for the operational meteorolgical community. This is the second paper in a pair that aim to serve as a machine learning resource for meteorologists. While the first paper focused on traditional machine learning methods (e.g., random forest), here a broad spectrum of neural networks and deep learning methods are discussed. Specifically this paper covers perceptrons, artificial neural networks, convolutional neural networks and U-networks. Like the part 1 paper, this manuscript discusses the terms associated with neural networks and their training. Then the manuscript provides some intuition behind every method and concludes by showing each method used in a meteorological example of diagnosing thunderstorms from satellite images (e.g., lightning flashes). This paper is accompanied by an open-source code repository to allow readers to explore neural networks using either the dataset provided (which is used in the paper) or as a template for alternate datasets.
Abstract:Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning methods are 'black boxes' and thus end-users are hesitant to apply the machine learning methods in their every day workflow. To reduce the opaqueness of machine learning methods and lower hesitancy towards machine learning in meteorology, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological example is used to contextualize the machine learning methods while also discussing machine learning topics using plain language. The following machine learning methods are demonstrated: linear regression; logistic regression; decision trees; random forest; gradient boosted decision trees; naive Bayes; and support vector machines. Beyond discussing the different methods, the paper also contains discussions on the general machine learning process as well as best practices to enable readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyse the use of machine learning in meteorology.