Abstract:Click-through rate (CTR) is a key signal of relevance for search engine results, both organic and sponsored. CTR of a result has two core components: (a) the probability of examination of a result by a user, and (b) the perceived relevance of the result given that it has been examined by the user. There has been considerable work on user browsing models, to model and analyze both the examination and the relevance components of CTR. In this paper, we propose a novel formulation: a micro-browsing model for how users read result snippets. The snippet text of a result often plays a critical role in the perceived relevance of the result. We study how particular words within a line of snippet can influence user behavior. We validate this new micro-browsing user model by considering the problem of predicting which snippet will yield higher CTR, and show that classification accuracy is dramatically higher with our micro-browsing user model. The key insight in this paper is that varying relatively few words within a snippet, and even their location within a snippet, can have a significant influence on the clickthrough of a snippet.