Abstract:Birth weight serves as a fundamental indicator of neonatal health, closely linked to both early medical interventions and long-term developmental risks. Traditional predictive models, often constrained by limited feature selection and incomplete datasets, struggle to achieve overlooking complex maternal and fetal interactions in diverse clinical settings. This research explores machine learning to address these limitations, utilizing a structured methodology that integrates advanced imputation strategies, supervised feature selection techniques, and predictive modeling. Given the constraints of the dataset, the research strengthens the role of data preprocessing in improving the model performance. Among the various methodologies explored, tree-based feature selection methods demonstrated superior capability in identifying the most relevant predictors, while ensemble-based regression models proved highly effective in capturing non-linear relationships and complex maternal-fetal interactions within the data. Beyond model performance, the study highlights the clinical significance of key physiological determinants, offering insights into maternal and fetal health factors that influence birth weight, offering insights that extend over statistical modeling. By bridging computational intelligence with perinatal research, this work underscores the transformative role of machine learning in enhancing predictive accuracy, refining risk assessment and informing data-driven decision-making in maternal and neonatal care. Keywords: Birth weight prediction, maternal-fetal health, MICE, BART, Gradient Boosting, neonatal outcomes, Clinipredictive.
Abstract:The challenge of missing data remains a significant obstacle across various scientific domains, necessitating the development of advanced imputation techniques that can effectively address complex missingness patterns. This study introduces the Precision Adaptive Imputation Network (PAIN), a novel algorithm designed to enhance data reconstruction by dynamically adapting to diverse data types, distributions, and missingness mechanisms. PAIN employs a tri-step process that integrates statistical methods, random forests, and autoencoders, ensuring balanced accuracy and efficiency in imputation. Through rigorous evaluation across multiple datasets, including those characterized by high-dimensional and correlated features, PAIN consistently outperforms traditional imputation methods, such as mean and median imputation, as well as other advanced techniques like MissForest. The findings highlight PAIN's superior ability to preserve data distributions and maintain analytical integrity, particularly in complex scenarios where missingness is not completely at random. This research not only contributes to a deeper understanding of missing data reconstruction but also provides a critical framework for future methodological innovations in data science and machine learning, paving the way for more effective handling of mixed-type datasets in real-world applications.