Abstract:Irrespective of the fact that Machine learning has produced groundbreaking results, it demands an enormous amount of data in order to perform so. Even though data production has been in its all-time high, almost all the data is unlabelled, hence making them unsuitable for training the algorithms. This paper proposes a novel method of extracting the features using Dynamic Mode Decomposition (DMD). The experiment is performed using data samples from Imagenet. The learning is done using SVM-linear, SVM-RBF, Random Kitchen Sink approach (RKS). The results have shown that DMD features with RKS give competing results.
Abstract:The techniques of deep learning have become the state of the art methodology for executing complicated tasks from various domains of computer vision, natural language processing, and several other areas. Due to its rapid development and promising benchmarks in those fields, researchers started experimenting with this technique to perform in the area of, especially in intrusion detection related tasks. Deep learning is a subset and a natural extension of classical Machine learning and an evolved model of neural networks. This paper contemplates and discusses all the methodologies related to the leading edge Deep learning and Neural network models purposing to the arena of Intrusion Detection Systems.