Abstract:Transformer-based models have achieved remarkable results in natural language processing (NLP) tasks such as text classification and machine translation. However, their computational complexity and resource demands pose challenges for scalability and accessibility. This research proposes a hybrid quantum-classical transformer model that integrates a quantum-enhanced attention mechanism to address these limitations. By leveraging quantum kernel similarity and variational quantum circuits (VQC), the model captures intricate token dependencies while improving computational efficiency. Experimental results on the IMDb dataset demonstrate that the quantum-enhanced model outperforms the classical baseline across all key metrics, achieving a 1.5% improvement in accuracy (65.5% vs. 64%), precision, recall, and F1 score. Statistical significance tests validate these improvements, highlighting the robustness of the quantum approach. These findings illustrate the transformative potential of quantum-enhanced attention mechanisms in optimizing NLP architectures for real-world applications.
Abstract:The core purpose of developing artificial neural networks was to mimic the functionalities of biological neural networks. However, unlike biological neural networks, traditional artificial neural networks are often structured hierarchically, which can impede the flow of information between neurons as the neurons in the same layer have no connections between them. Hence, we propose a more robust model of artificial neural networks where the hidden neurons, residing in the same hidden layer, are interconnected, enabling the neurons to learn complex patterns and speeding up the convergence rate. With the experimental study of our proposed model as fully connected layers in shallow and deep networks, we demonstrate that the model results in a significant increase in convergence rate.