Abstract:Exploring search spaces is one of the most unpredictable challenges that has attracted the interest of researchers for decades. One way to handle unpredictability is to characterise the search spaces and take actions accordingly. A well-characterised search space can assist in mapping the problem states to a set of operators for generating new problem states. In this paper, a landscape analysis-based set of features has been analysed using the most renown machine learning approaches to determine the optimal feature set. However, in order to deal with problem complexity and induce commonality for transferring experience across domains, the selection of the most representative features remains crucial. The proposed approach analyses the predictivity of a set of features in order to determine the best categorization.
Abstract:The Artificial Bee Colony (ABC) algorithm is an evolutionary optimization algorithm based on swarm intelligence and inspired by the honey bees' food search behavior. Since the ABC algorithm has been developed to achieve optimal solutions by searching in the continuous search space, modification is required to apply this method to binary optimization problems. In this paper, we improve the ABC algorithm to solve binary optimization problems and call it the improved binary Artificial Bee Colony (ibinABC). The proposed method consists of an update mechanism based on fitness values and processing different number of decision variables. Thus, we aim to prevent the ABC algorithm from getting stuck in a local minimum by increasing its exploration ability. We compare the ibinABC algorithm with three variants of the ABC and other meta-heuristic algorithms in the literature. For comparison, we use the wellknown OR-Library dataset containing 15 problem instances prepared for the uncapacitated facility location problem. Computational results show that the proposed method is superior to other methods in terms of convergence speed and robustness. The source code of the algorithm will be available on GitHub after reviewing process