Abstract:One of the most important study areas in affective computing is emotion identification using EEG data. In this study, the Gated Recurrent Unit (GRU) algorithm, which is a type of Recurrent Neural Networks (RNNs), is tested to see if it can use EEG signals to predict emotional states. Our publicly accessible dataset consists of resting neutral data as well as EEG recordings from people who were exposed to stimuli evoking happy, neutral, and negative emotions. For the best feature extraction, we pre-process the EEG data using artifact removal, bandpass filters, and normalization methods. With 100% accuracy on the validation set, our model produced outstanding results by utilizing the GRU's capacity to capture temporal dependencies. When compared to other machine learning techniques, our GRU model's Extreme Gradient Boosting Classifier had the highest accuracy. Our investigation of the confusion matrix revealed insightful information about the performance of the model, enabling precise emotion classification. This study emphasizes the potential of deep learning models like GRUs for emotion recognition and advances in affective computing. Our findings open up new possibilities for interacting with computers and comprehending how emotions are expressed through brainwave activity.
Abstract:Over many decades, research is being attempted for the removal of noise in the ambulatory EEG. In this respect, an enormous number of research papers is published for identification of noise removal, It is difficult to present a detailed review of all these literature. Therefore, in this paper, an attempt has been made to review the detection and removal of an noise. More than 100 research papers have been discussed to discern the techniques for detecting and removal the ambulatory EEG. Further, the literature survey shows that the pattern recognition required to detect ambulatory method, eye open and close, varies with different conditions of EEG datasets. This is mainly due to the fact that EEG detected under different conditions has different characteristics. This is, in turn, necessitates the identification of pattern recognition technique to effectively distinguish EEG noise data from a various condition of EEG data.
Abstract:This paper presents a comprehensive evaluation of the potential of Quantum Convolutional Neural Networks (QCNNs) in comparison to classical Convolutional Neural Networks (CNNs) and Artificial / Classical Neural Network (ANN) models. With the increasing amount of data, utilizing computing methods like CNN in real-time has become challenging. QCNNs overcome this challenge by utilizing qubits to represent data in a quantum environment and applying CNN structures to quantum computers. The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions such as batch size and input size. The maximum complexity level that QCNNs can handle in terms of these parameters is also investigated. The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications, demonstrating their promise as a powerful tool in the field of machine learning.
Abstract:The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality. The present paper provides a comparative study of view update algorithms in rational approach. For, understand the basic concepts with abduction, we provide an abductive framework for knowledge base dynamics. Finally, we demonstrate how belief base dynamics can provide an axiomatic characterization for insertion a view atom to the database. We give a quick overview of the main operators for belief change, in particular, belief update versus database update.
Abstract:The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. We show that knowledge base dynamics has interesting connection with kernel change via hitting set and abduction. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality. Many different view update algorithms have been proposed in the literature to address this problem. The present paper provides a comparative study of view update algorithms in rational approach.
Abstract:The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.
Abstract:The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. We introduced the Horn knowledge base dynamics to deal with two important points: first, to handle belief states that need not be deductively closed; and the second point is the ability to declare certain parts of the belief as immutable. In this paper, we address another, radically new approach to this problem. This approach is very close to the Hansson's dyadic representation of belief. Here, we consider the immutable part as defining a new logical system. By a logical system, we mean that it defines its own consequence relation and closure operator. Based on this, we provide an abductive framework for Horn knowledge base dynamics.
Abstract:The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics.