Abstract:Accurate cattle live weight estimation is vital for livestock management, welfare, and productivity. Traditional methods, such as manual weighing using a walk-over weighing system or proximate measurements using body condition scoring, involve manual handling of stock and can impact productivity from both a stock and economic perspective. To address these issues, this study investigated a cost-effective, non-contact method for live weight calculation in cattle using 3D reconstruction. The proposed pipeline utilized multi-view RGB images with SAM 3D-based agreement-guided fusion, followed by ensemble regression. Our approach generates a single 3D point cloud per animal and compares classical ensemble models with deep learning models under low-data conditions. Results show that SAM 3D with multi-view agreement fusion outperforms other 3D generation methods, while classical ensemble models provide the most consistent performance for practical farm scenarios (R$^2$ = 0.69 $\pm$ 0.10, MAPE = 2.22 $\pm$ 0.56 \%), making this practical for on-farm implementation. These findings demonstrate that improving reconstruction quality is more critical than increasing model complexity for scalable deployment on farms where producing a large volume of 3D data is challenging.




Abstract:Identifying the extent of brain tumors is a significant challenge in brain cancer treatment. The main difficulty is in the approximate detection of tumor size. Magnetic resonance imaging (MRI) has become a critical diagnostic tool. However, manually detecting the boundaries of brain tumors from MRI scans is a labor-intensive task that requires extensive expertise. Deep learning and computer-aided detection techniques have led to notable advances in machine learning for this purpose. In this paper, we propose a modified You Only Look Once (YOLOv8) model to accurately detect the tumors within the MRI images. The proposed model replaced the Non-Maximum Suppression (NMS) algorithm with a Real-Time Detection Transformer (RT- DETR) in the detection head. NMS filters out redundant or overlapping bounding boxes in the detected tumors, but they are hand-designed and pre-set. RT-DETR removes hand-designed components. The second improvement was made by replacing the normal convolution block with ghost convolution. Ghost Convolution reduces computational and memory costs while maintaining high accuracy and enabling faster inference, making it ideal for resource-constrained environments and real-time applications. The third improvement was made by introducing a vision transformer block in the backbone of YOLOv8 to extract context-aware features. We used a publicly available dataset of brain tumors in the proposed model. The proposed model performed better than the original YOLOv8 model and also performed better than other object detectors (Faster R- CNN, Mask R-CNN, YOLO, YOLOv3, YOLOv4, YOLOv5, SSD, RetinaNet, EfficientDet, and DETR). The proposed model achieved 0.91 mAP (mean Average Precision)@0.5.




Abstract:Convolutional Neural Networks (CNNs) have drawn researchers' attention to identifying cattle using muzzle images. However, CNNs often fail to capture long-range dependencies within the complex patterns of the muzzle. The transformers handle these challenges. This inspired us to fuse the strengths of CNNs and transformers in muzzle-based cattle identification. Addition and concatenation have been the most commonly used techniques for feature fusion. However, addition fails to preserve discriminative information, while concatenation results in an increase in dimensionality. Both methods are simple operations and cannot discover the relationships or interactions between fusing features. This research aims to overcome the issues faced by addition and concatenation. This research introduces a novel approach called Multi-Head Attention Feature Fusion (MHAFF) for the first time in cattle identification. MHAFF captures relations between the different types of fusing features while preserving their originality. The experiments show that MHAFF outperformed addition and concatenation techniques and the existing cattle identification methods in accuracy on two publicly available cattle datasets. MHAFF demonstrates excellent performance and quickly converges to achieve optimum accuracy of 99.88% and 99.52% in two cattle datasets simultaneously.