Abstract:This paper presents for the first time successful results of active flow control with multiple independently controlled zero-net-mass-flux synthetic jets. The jets are placed on a three-dimensional cylinder along its span with the aim of reducing the drag coefficient. The method is based on a deep-reinforcement-learning framework that couples a computational-fluid-dynamics solver with an agent using the proximal-policy-optimization algorithm. We implement a multi-agent reinforcement-learning framework which offers numerous advantages: it exploits local invariants, makes the control adaptable to different geometries, facilitates transfer learning and cross-application of agents and results in significant training speedup. In this contribution we report significant drag reduction after applying the DRL-based control in three different configurations of the problem.
Abstract:Modelling the near-wall region of wall-bounded turbulent flows is a widespread practice to reduce the computational cost of large-eddy simulations (LESs) at high Reynolds number. As a first step towards a data-driven wall-model, a neural-network-based approach to predict the near-wall behaviour in a turbulent open channel flow is investigated. The fully-convolutional network (FCN) proposed by Guastoni et al. [preprint, arXiv:2006.12483] is trained to predict the two-dimensional velocity-fluctuation fields at $y^{+}_{\rm target}$, using the sampled fluctuations in wall-parallel planes located farther from the wall, at $y^{+}_{\rm input}$. The data for training and testing is obtained from a direct numerical simulation (DNS) at friction Reynolds numbers $Re_{\tau} = 180$ and $550$. The turbulent velocity-fluctuation fields are sampled at various wall-normal locations, i.e. $y^{+} = \{15, 30, 50, 80, 100, 120, 150\}$. At $Re_{\tau}=550$, the FCN can take advantage of the self-similarity in the logarithmic region of the flow and predict the velocity-fluctuation fields at $y^{+} = 50$ using the velocity-fluctuation fields at $y^{+} = 100$ as input with less than 20% error in prediction of streamwise-fluctuations intensity. These results are an encouraging starting point to develop a neural-network based approach for modelling turbulence at the wall in numerical simulations.
Abstract:Two models based on convolutional neural networks are trained to predict the two-dimensional velocity-fluctuation fields at different wall-normal locations in a turbulent open channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully-convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), hence named FCN-POD. Both models are trained using data from two direct numerical simulations (DNS) at friction Reynolds numbers $Re_{\tau} = 180$ and $550$. Thanks to their ability to predict the nonlinear interactions in the flow, both models show a better prediction performance than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between input and output fields. The performance of the various models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. The FCN exhibits the best predictions closer to the wall, whereas the FCN-POD model provides better predictions at larger wall-normal distances. We also assessed the feasibility of performing transfer learning for the FCN model, using the weights from $Re_{\tau}=180$ to initialize those of the $Re_{\tau}=550$ case. Our results indicate that it is possible to obtain a performance similar to that of the reference model up to $y^{+}=50$, with $50\%$ and $25\%$ of the original training data. These non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
Abstract:A fully-convolutional neural-network model is used to predict the streamwise velocity fields at several wall-normal locations by taking as input the streamwise and spanwise wall-shear-stress planes in a turbulent open channel flow. The training data are generated by performing a direct numerical simulation (DNS) at a friction Reynolds number of $Re_{\tau}=180$. Various networks are trained for predictions at three inner-scaled locations ($y^+ = 15,~30,~50$) and for different time steps between input samples $\Delta t^{+}_{s}$. The inherent non-linearity of the neural-network model enables a better prediction capability than linear methods, with a lower error in both the instantaneous flow fields and turbulent statistics. Using a dataset with higher $\Delta t^+_{s}$ improves the generalization at all the considered wall-normal locations, as long as the network capacity is sufficient to generalize over the dataset. The use of a multiple-output network, with parallel dedicated branches for two wall-normal locations, does not provide any improvement over two separated single-output networks, other than a moderate saving in training time. Training time can be effectively reduced, by a factor of 4, via a transfer learning method that initializes the network parameters using the optimized parameters of a previously-trained network.