Abstract:Though multimodal emotion recognition has achieved significant progress over recent years, the potential of rich synergic relationships across the modalities is not fully exploited. In this paper, we introduce Recursive Joint Cross-Modal Attention (RJCMA) to effectively capture both intra-and inter-modal relationships across audio, visual and text modalities for dimensional emotion recognition. In particular, we compute the attention weights based on cross-correlation between the joint audio-visual-text feature representations and the feature representations of individual modalities to simultaneously capture intra- and inter-modal relationships across the modalities. The attended features of the individual modalities are again fed as input to the fusion model in a recursive mechanism to obtain more refined feature representations. We have also explored Temporal Convolutional Networks (TCNs) to improve the temporal modeling of the feature representations of individual modalities. Extensive experiments are conducted to evaluate the performance of the proposed fusion model on the challenging Affwild2 dataset. By effectively capturing the synergic intra- and inter-modal relationships across audio, visual and text modalities, the proposed fusion model achieves a Concordance Correlation Coefficient (CCC) of 0.585 (0.542) and 0.659 (0.619) for valence and arousal respectively on the validation set (test set). This shows a significant improvement over the baseline of 0.24 (0.211) and 0.20 (0.191) for valence and arousal respectively on the validation set (test set) of the valence-arousal challenge of 6th Affective Behavior Analysis in-the-Wild (ABAW) competition.
Abstract:In video-based emotion recognition, audio and visual modalities are often expected to have a complementary relationship, which is widely explored using cross-attention. However, they may also exhibit weak complementary relationships, resulting in poor representations of audio-visual features, thus degrading the performance of the system. To address this issue, we propose Dynamic Cross-Attention (DCA) that can dynamically select cross-attended or unattended features on the fly based on their strong or weak complementary relationship with each other, respectively. Specifically, a simple yet efficient gating layer is designed to evaluate the contribution of the cross-attention mechanism and choose cross-attended features only when they exhibit a strong complementary relationship, otherwise unattended features. We evaluate the performance of the proposed approach on the challenging RECOLA and Aff-Wild2 datasets. We also compare the proposed approach with other variants of cross-attention and show that the proposed model consistently improves the performance on both datasets.
Abstract:Although person or identity verification has been predominantly explored using individual modalities such as face and voice, audio-visual fusion has recently shown immense potential to outperform unimodal approaches. Audio and visual modalities are often expected to pose strong complementary relationships, which plays a crucial role in effective audio-visual fusion. However, they may not always strongly complement each other, they may also exhibit weak complementary relationships, resulting in poor audio-visual feature representations. In this paper, we propose a Dynamic Cross-Attention (DCA) model that can dynamically select the cross-attended or unattended features on the fly based on the strong or weak complementary relationships, respectively, across audio and visual modalities. In particular, a conditional gating layer is designed to evaluate the contribution of the cross-attention mechanism and choose cross-attended features only when they exhibit strong complementary relationships, otherwise unattended features. Extensive experiments are conducted on the Voxceleb1 dataset to demonstrate the robustness of the proposed model. Results indicate that the proposed model consistently improves the performance on multiple variants of cross-attention while outperforming the state-of-the-art methods.
Abstract:Person or identity verification has been recently gaining a lot of attention using audio-visual fusion as faces and voices share close associations with each other. Conventional approaches based on audio-visual fusion rely on score-level or early feature-level fusion techniques. Though existing approaches showed improvement over unimodal systems, the potential of audio-visual fusion for person verification is not fully exploited. In this paper, we have investigated the prospect of effectively capturing both the intra- and inter-modal relationships across audio and visual modalities, which can play a crucial role in significantly improving the fusion performance over unimodal systems. In particular, we introduce a recursive fusion of a joint cross-attentional model, where a joint audio-visual feature representation is employed in the cross-attention framework in a recursive fashion to progressively refine the feature representations that can efficiently capture the intra-and inter-modal relationships. To further enhance the audio-visual feature representations, we have also explored BLSTMs to improve the temporal modeling of audio-visual feature representations. Extensive experiments are conducted on the Voxceleb1 dataset to evaluate the proposed model. Results indicate that the proposed model shows promising improvement in fusion performance by adeptly capturing the intra-and inter-modal relationships across audio and visual modalities.
Abstract:Speaker verification has been widely explored using speech signals, which has shown significant improvement using deep models. Recently, there has been a surge in exploring faces and voices as they can offer more complementary and comprehensive information than relying only on a single modality of speech signals. Though current methods in the literature on the fusion of faces and voices have shown improvement over that of individual face or voice modalities, the potential of audio-visual fusion is not fully explored for speaker verification. Most of the existing methods based on audio-visual fusion either rely on score-level fusion or simple feature concatenation. In this work, we have explored cross-modal joint attention to fully leverage the inter-modal complementary information and the intra-modal information for speaker verification. Specifically, we estimate the cross-attention weights based on the correlation between the joint feature presentation and that of the individual feature representations in order to effectively capture both intra-modal as well inter-modal relationships among the faces and voices. We have shown that efficiently leveraging the intra- and inter-modal relationships significantly improves the performance of audio-visual fusion for speaker verification. The performance of the proposed approach has been evaluated on the Voxceleb1 dataset. Results show that the proposed approach can significantly outperform the state-of-the-art methods of audio-visual fusion for speaker verification.