Abstract:Effective human behavior modeling is critical for successful human-robot interaction. Current state-of-the-art approaches for predicting listening head behavior during dyadic conversations employ continuous-to-discrete representations, where continuous facial motion sequence is converted into discrete latent tokens. However, non-verbal facial motion presents unique challenges owing to its temporal variance and multi-modal nature. State-of-the-art discrete motion token representation struggles to capture underlying non-verbal facial patterns making training the listening head inefficient with low-fidelity generated motion. This study proposes a novel method for representing and predicting non-verbal facial motion by encoding long sequences into a sparse sequence of keyframes and transition frames. By identifying crucial motion steps and interpolating intermediate frames, our method preserves the temporal structure of motion while enhancing instance-wise diversity during the learning process. Additionally, we apply this novel sparse representation to the task of listening head prediction, demonstrating its contribution to improving the explanation of facial motion patterns.
Abstract:Pain is a more intuitive and user-friendly way of communicating problems, making it especially useful in rehabilitation nurse training robots. While most previous methods have focused on classifying or recognizing pain expressions, these approaches often result in unnatural, jiggling robot faces. We introduce PainDiffusion, a model that generates facial expressions in response to pain stimuli, with controllable pain expressiveness and emotion status. PainDiffusion leverages diffusion forcing to roll out predictions over arbitrary lengths using a conditioned temporal U-Net. It operates as a latent diffusion model within EMOCA's facial expression latent space, ensuring a compact data representation and quick rendering time. For training data, we process the BioVid Heatpain Database, extracting expression codes and subject identity configurations. We also propose a novel set of metrics to evaluate pain expressions, focusing on expressiveness, diversity, and the appropriateness of model-generated outputs. Finally, we demonstrate that PainDiffusion outperforms the autoregressive method, both qualitatively and quantitatively. Code, videos, and further analysis are available at: \href{https://damtien444.github.io/paindf/}{https://damtien444.github.io/paindf/}.