Abstract:Data augmentation remains a widely utilized technique in deep learning, particularly in tasks such as image classification, semantic segmentation, and object detection. Among them, Copy-Paste is a simple yet effective method and gain great attention recently. However, existing Copy-Paste often overlook contextual relevance between source and target images, resulting in inconsistencies in generated outputs. To address this challenge, we propose a context-aware approach that integrates Bidirectional Latent Information Propagation (BLIP) for content extraction from source images. By matching extracted content information with category information, our method ensures cohesive integration of target objects using Segment Anything Model (SAM) and You Only Look Once (YOLO). This approach eliminates the need for manual annotation, offering an automated and user-friendly solution. Experimental evaluations across diverse datasets demonstrate the effectiveness of our method in enhancing data diversity and generating high-quality pseudo-images across various computer vision tasks.
Abstract:Detecting obstacles in railway scenarios is both crucial and challenging due to the wide range of obstacle categories and varying ambient conditions such as weather and light. Given the impossibility of encompassing all obstacle categories during the training stage, we address this out-of-distribution (OOD) issue with a semi-supervised segmentation approach guided by optical flow clues. We reformulate the task as a binary segmentation problem instead of the traditional object detection approach. To mitigate data shortages, we generate highly realistic synthetic images using Segment Anything (SAM) and YOLO, eliminating the need for manual annotation to produce abundant pixel-level annotations. Additionally, we leverage optical flow as prior knowledge to train the model effectively. Several experiments are conducted, demonstrating the feasibility and effectiveness of our approach.
Abstract:As Facial Recognition System(FRS) is widely applied in areas such as access control and mobile payments due to its convenience and high accuracy. The security of facial recognition is also highly regarded. The Face anti-spoofing system(FAS) for face recognition is an important component used to enhance the security of face recognition systems. Traditional FAS used images containing identity information to detect spoofing traces, however there is a risk of privacy leakage during the transmission and storage of these images. Besides, the encryption and decryption of these privacy-sensitive data takes too long compared to inference time by FAS model. To address the above issues, we propose a face anti-spoofing algorithm based on facial skin patches leveraging pure facial skin patch images as input, which contain no privacy information, no encryption or decryption is needed for these images. We conduct experiments on several public datasets, the results prove that our algorithm has demonstrated superiority in both accuracy and speed.
Abstract:Human facial skin images contain abundant textural information that can serve as valuable features for attribute classification, such as age, race, and gender. Additionally, facial skin images offer the advantages of easy collection and minimal privacy concerns. However, the availability of well-labeled human skin datasets with a sufficient number of images is limited. To address this issue, we introduce a dataset called FaceSkin, which encompasses a diverse range of ages and races. Furthermore, to broaden the application scenarios, we incorporate synthetic skin-patches obtained from 2D and 3D attack images, including printed paper, replays, and 3D masks. We evaluate the FaceSkin dataset across distinct categories and present experimental results demonstrating its effectiveness in attribute classification, as well as its potential for various downstream tasks, such as Face anti-spoofing and Age estimation.