Abstract:Most data-driven models for medical image analysis rely on universal augmentations to improve performance. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. Experiments show our method improves accuracy across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
Abstract:Time series prediction plays a crucial role in various industrial fields. In recent years, neural networks with a transformer backbone have achieved remarkable success in many domains, including computer vision and NLP. In time series analysis domain, some studies have suggested that even the simplest MLP networks outperform advanced transformer-based networks on time series forecast tasks. However, we believe these findings indicate there to be low-rank properties in time series sequences. In this paper, we consider the low-pass characteristics of transformers and try to incorporate the advantages of MLP. We adopt skip-layer connections inspired by Unet into traditional transformer backbone, thus preserving high-frequency context from input to output, namely U-shaped Transformer. We introduce patch merge and split operation to extract features with different scales and use larger datasets to fully make use of the transformer backbone. Our experiments demonstrate that the model performs at an advanced level across multiple datasets with relatively low cost.