Abstract:Diffusion models have shown unprecedented success in the task of text-to-image generation. While these models are capable of generating high-quality and realistic images, the complexity of sequential denoising has raised societal concerns regarding high computational demands and energy consumption. In response, various efforts have been made to improve inference efficiency. However, most of the existing efforts have taken a fixed approach with neural network simplification or text prompt optimization. Are the quality improvements from all denoising computations equally perceivable to humans? We observed that images from different text prompts may require different computational efforts given the desired content. The observation motivates us to present BudgetFusion, a novel model that suggests the most perceptually efficient number of diffusion steps before a diffusion model starts to generate an image. This is achieved by predicting multi-level perceptual metrics relative to diffusion steps. With the popular Stable Diffusion as an example, we conduct both numerical analyses and user studies. Our experiments show that BudgetFusion saves up to five seconds per prompt without compromising perceptual similarity. We hope this work can initiate efforts toward answering a core question: how much do humans perceptually gain from images created by a generative model, per watt of energy?
Abstract:In languages without orthographic word boundaries, NLP models perform word segmentation, either as an explicit preprocessing step or as an implicit step in an end-to-end computation. This paper shows that Chinese NLP models are vulnerable to morphological garden path errors: errors caused by a failure to resolve local word segmentation ambiguities using sentence-level morphosyntactic context. We propose a benchmark, ERAS, that tests a model's vulnerability to morphological garden path errors by comparing its behavior on sentences with and without local segmentation ambiguities. Using ERAS, we show that word segmentation models make garden path errors on locally ambiguous sentences, but do not make equivalent errors on unambiguous sentences. We further show that sentiment analysis models with character-level tokenization make implicit garden path errors, even without an explicit word segmentation step in the pipeline. Our results indicate that models' segmentation of Chinese text often fails to account for morphosyntactic context.