Abstract:Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.