Abstract:Given partial measurements of a time-varying graph signal, we propose an algorithm to simultaneously estimate both the underlying graph topology and the missing measurements. The proposed algorithm operates by training an interpretable neural network, designed from the unrolling framework. The proposed technique can be used both as a graph learning and a graph signal reconstruction algorithm. This work enhances prior work in graph signal reconstruction by allowing the underlying graph to be unknown; and also builds on prior work in graph learning by tailoring the learned graph to the signal reconstruction task.
Abstract:We propose a neuroscience-inspired Solo Pass Embedded Learning Algorithm (SPELA). SPELA is a prime candidate for training and inference applications in Edge AI devices. At the same time, SPELA can optimally cater to the need for a framework to study perceptual representation learning and formation. SPELA has distinctive features such as neural priors (in the form of embedded vectors), no weight transport, no update locking of weights, complete local Hebbian learning, single forward pass with no storage of activations, and single weight update per sample. Juxtaposed with traditional approaches, SPELA operates without the need for backpropagation. We show that our algorithm can perform nonlinear classification on a noisy boolean operation dataset. Additionally, we exhibit high performance using SPELA across MNIST, KMNIST, and Fashion MNIST. Lastly, we show the few-shot and 1-epoch learning capabilities of SPELA on MNIST, KMNIST, and Fashion MNIST, where it consistently outperforms backpropagation.