Department of Electrical and Computer Engineering, University of Cyprus
Abstract:This paper investigates the problem of transmit waveform design in the context of a chaotic signal-based self-sustainable reconfigurable intelligent surface (RIS)-aided system for simultaneous wireless information and power transfer (SWIPT). Specifically, we propose a differential chaos shift keying (DCSK)-based RIS-aided point-to-point set-up, where the RIS is partitioned into two non-overlapping surfaces. The elements of the first sub-surface perform energy harvesting (EH), which in turn, provide the required power to the other sub-surface operating in the information transfer (IT) mode. In this framework, by considering a generalized frequency-selective Nakagami-m fading scenario as well as the nonlinearities of the EH process, we derive closed-form analytical expressions for both the bit error rate (BER) at the receiver and the harvested power at the RIS. Our analysis demonstrates, that both these performance metrics depend on the parameters of the wireless channel, the transmit waveform design, and the number of reflecting elements at the RIS, which switch between the IT and EH modes, depending on the application requirements. Moreover, we show that, having more reflecting elements in the IT mode is not always beneficial and also, for a given acceptable BER, we derive a lower bound on the number of RIS elements that need to be operated in the EH mode. Furthermore, for a fixed RIS configuration, we investigate a trade-off between the achievable BER and the harvested power at the RIS and accordingly, we propose appropriate transmit waveform designs. Finally, our numerical results illustrate the importance of our intelligent DCSK-based waveform design on the considered framework.
Abstract:This paper proposes a chaotic waveform-based multi-antenna receiver design for simultaneous wireless information and power transfer (SWIPT). Particularly, we present a differential chaos shift keying (DCSK)-based SWIPT multiantenna receiver architecture, where each antenna switches between information transfer (IT) and energy harvesting (EH) modes depending on the receiver's requirements. We take into account a generalized frequency-selective Nakagami-m fading model as well as the nonlinearities of the EH process to derive closed-form analytical expressions for the associated bit error rate (BER) and the harvested direct current (DC), respectively. We show that, both depend on the parameters of the transmitted waveform and the number of receiver antennas being utilized in the IT and EH mode. We investigate a trade-off in terms of the BER and energy transfer by introducing a novel achievable `success rate - harvested energy' region. Moreover, we demonstrate that energy and information transfer are two conflicting tasks and hence, a single waveform cannot be simultaneously optimal for both IT and EH. Accordingly, we propose appropriate transmit waveform designs based on the application specific requirements of acceptable BER or harvested DC or both. Numerical results demonstrate the importance of chaotic waveform-based signal design and its impact on the proposed receiver architecture.
Abstract:Multiple-input multiple-output (MIMO) technology has significantly impacted wireless communication, by providing extraordinary performance gains. However, a minimum inter-antenna space constraint in MIMO systems does not allow its integration in devices with limited space. In this context, the concept of fluid antenna systems (FASs) appears to be a potent solution, where there is no such restriction. In this paper, we investigate the average level crossing rate (LCR) of such FASs. Specifically, we derive closed-form analytical expressions of the LCR of such systems and extensive Monte-Carlo simulations validate the proposed analytical framework. Moreover, we also demonstrate that under certain conditions, the LCR obtained coincides with that of a conventional selection combining-based receiver. Finally, the numerical results also provide insights regarding the selection of appropriate parameters that enhance the system performance.
Abstract:This paper studies the performance of a differential chaos shift keying (DCSK)-based wireless power transfer (WPT) setup in a frequency selective scenario. Particularly, by taking into account the nonlinearities of the energy harvesting (EH) process and a generalized frequency selective Nakagami-m fading channel, we derive closed-form analytical expressions for the harvested energy in terms of the transmitted waveform and channel parameters. A simplified closed-form expression for the harvested energy is also obtained for a scenario, where the delay spread is negligible in comparison to the transmit symbol duration. Nontrivial design insights are provided, where it is shown how the power delay profile of the channel as well as the parameters of the transmitted waveform affect the EH performance. Our results show that a frequency selective channel is comparatively more beneficial for WPT compared to a flat fading scenario. However, a significant delay spread negatively impacts the energy transfer.
Abstract:In this paper, we investigate multi-dimensional chaotic signals with respect to wireless power transfer (WPT). Specifically, we analyze a multi-dimensional Lorenz-based chaotic signal under a WPT framework. By taking into account the nonlinearities of the energy harvesting process, closed-form analytical expressions for the average harvested energy are derived. Moreover, the practical limitations of the high power amplifier (HPA) at the transmitter are also taken into consideration. We interestingly observe that for these types of signals, high peak-to-average-power-ratio (PAPR) is not the only criterion for obtaining enhanced WPT. We demonstrate that while the HPA imperfections do not significantly affect the signal PAPR, it notably degrades the energy transfer performance. As the proposed framework is general, we also demonstrate its application with respect to a Henon signal based WPT. Finally we compare Lorenz and Henon signals with the conventional multisine waveforms in terms of WPT performance.
Abstract:In this paper, we investigate conventional communication-based chaotic waveforms in the context of wireless power transfer (WPT). Particularly, we present a differential chaos shift keying (DCSK)-based WPT architecture, that employs an analog correlator at the receiver, in order to boost the energy harvesting (EH) performance. We take into account the nonlinearities of the EH process and derive closed-form analytical expressions for the harvested direct current (DC) under a generalized Nakagami-m block fading model. We show that, in this framework, both the peak-to-average-power-ratio of the received signal and the harvested DC, depend on the parameters of the transmitted waveform. Furthermore, we investigate the case of deterministic unmodulated chaotic waveforms and demonstrate that, in the absence of a correlator, modulation does not affect the achieved harvested DC. On the other hand, it is shown that for scenarios with a correlator-aided receiver, DCSK significantly outperforms the unmodulated case. Based on this observation, we propose a novel DCSK-based signal design, which further enhances the WPT capability of the proposed architecture; corresponding analytical expressions for the harvested DC are also derived. Our results demonstrate that the proposed architecture and the associated signal design, can achieve significant EH gains in DCSK-based WPT systems. Furthermore, we also show that, even by taking into account the nonlinearities at the transmitter amplifier, the proposed chaotic waveform performs significantly better in terms of EH, when compared with the existing multisine signals.
Abstract:In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the receiver in order to boost the energy harvesting (EH) performance. By taking into account the nonlinearities of the EH process, we derive closed-form analytical expressions for the peak-to-average-power-ratio of the received signal as well as the harvested power. Nontrivial design insights are provided, where it is shown how the parameters of the transmitted waveform affects the EH performance. Furthermore, it is demonstrated that the employment of a correlator at the receiver achieves significant EH gains in DCSK-based WPT systems.