Abstract:In this paper, we introduce the MediaSpin dataset aiming to help in the development of models that can detect different forms of media bias present in news headlines, developed through human-supervised and -validated Large Language Model (LLM) labeling of media bias. This corpus comprises 78,910 pairs of news headlines and annotations with explanations of the 13 distinct types of media bias categories assigned. We demonstrate the usefulness of our dataset for automated bias detection in news edits.
Abstract:We present a novel dataset for the controlled composition of counterarguments designed for further applications in argument refining, mining, and evaluation. Our dataset constitutes enriched counter-arguments to posts in the Reddit ChangeMyView dataset that are integrated with evidence retrieved from high-quality sources and generated based on user preferences, adjusting the critical attributes of evidence and argument style. The resultant Counterfire corpus comprises arguments generated from GPT-3.5 turbo, Koala, and PaLM 2 models and two of their finetuned variants (N = 32,000). Model evaluation indicates strong paraphrasing abilities with evidence, albeit limited word overlap, while demonstrating high style integration (0.9682 for 'reciprocity'), showing the ability of LLM to assimilate diverse styles. Of all models, GPT-3.5 turbo showed the highest scores in argument quality evaluation, showing consistent accuracy (score >0.8). In further analyses, reciprocity-style counterarguments display higher counts in most categories, possibly indicating a more creatively persuasive use of evidence. In contrast, human-written counterarguments exhibited greater argumentative richness and diversity across categories. Despite human-written arguments being favored as the most persuasive in human evaluation, the 'No Style' generated text surprisingly exhibited the highest score, prompting further exploration and investigation on the trade-offs in generation for facts and style.