Abstract:We investigate semantic guarantees of private learning algorithms for their resilience to training Data Reconstruction Attacks (DRAs) by informed adversaries. To this end, we derive non-asymptotic minimax lower bounds on the adversary's reconstruction error against learners that satisfy differential privacy (DP) and metric differential privacy (mDP). Furthermore, we demonstrate that our lower bound analysis for the latter also covers the high dimensional regime, wherein, the input data dimensionality may be larger than the adversary's query budget. Motivated by the theoretical improvements conferred by metric DP, we extend the privacy analysis of popular deep learning algorithms such as DP-SGD and Projected Noisy SGD to cover the broader notion of metric differential privacy.