Abstract:In recent years, there has been a lot of research work activity focused on carrying out asymptotic and non-asymptotic convergence analyses for two-timescale actor critic algorithms where the actor updates are performed on a timescale that is slower than that of the critic. In a recent work, the critic-actor algorithm has been presented for the infinite horizon discounted cost setting in the look-up table case where the timescales of the actor and the critic are reversed and asymptotic convergence analysis has been presented. In our work, we present the first critic-actor algorithm with function approximation and in the long-run average reward setting and present the first finite-time (non-asymptotic) analysis of such a scheme. We obtain optimal learning rates and prove that our algorithm achieves a sample complexity of $\mathcal{\tilde{O}}(\epsilon^{-2.08})$ for the mean squared error of the critic to be upper bounded by $\epsilon$ which is better than the one obtained for actor-critic in a similar setting. We also show the results of numerical experiments on three benchmark settings and observe that the critic-actor algorithm competes well with the actor-critic algorithm.
Abstract:Actor Critic methods have found immense applications on a wide range of Reinforcement Learning tasks especially when the state-action space is large. In this paper, we consider actor critic and natural actor critic algorithms with function approximation for constrained Markov decision processes (C-MDP) involving inequality constraints and carry out a non-asymptotic analysis for both of these algorithms in a non-i.i.d (Markovian) setting. We consider the long-run average cost criterion where both the objective and the constraint functions are suitable policy-dependent long-run averages of certain prescribed cost functions. We handle the inequality constraints using the Lagrange multiplier method. We prove that these algorithms are guaranteed to find a first-order stationary point (i.e., $\Vert \nabla L(\theta,\gamma)\Vert_2^2 \leq \epsilon$) of the performance (Lagrange) function $L(\theta,\gamma)$, with a sample complexity of $\mathcal{\tilde{O}}(\epsilon^{-2.5})$ in the case of both Constrained Actor Critic (C-AC) and Constrained Natural Actor Critic (C-NAC) algorithms.We also show the results of experiments on a few different grid world settings and observe good empirical performance using both of these algorithms. In particular, for large grid sizes, Constrained Natural Actor Critic shows slightly better results than Constrained Actor Critic while the latter is slightly better for a small grid size.