Abstract:Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.