Abstract:This paper presents a deep learning based model predictive control (MPC) algorithm for systems with unmatched and bounded state-action dependent uncertainties of unknown structure. We utilize a deep neural network (DNN) as an oracle in the underlying optimization problem of learning based MPC (LBMPC) to estimate unmatched uncertainties. Generally, non-parametric oracles such as DNN are considered difficult to employ with LBMPC due to the technical difficulties associated with estimation of their coefficients in real time. We employ a dual-timescale adaptation mechanism, where the weights of the last layer of the neural network are updated in real time while the inner layers are trained on a slower timescale using the training data collected online and selectively stored in a buffer. Our results are validated through a numerical experiment on the compression system model of jet engine. These results indicate that the proposed approach is implementable in real time and carries the theoretical guarantees of LBMPC.
Abstract:This paper presents a deep learning based model predictive control algorithm for control affine nonlinear discrete time systems with matched and bounded state-dependent uncertainties of unknown structure. Since the structure of uncertainties is not known, a deep neural network (DNN) is employed to approximate the disturbances. In order to avoid any unwanted behavior during the learning phase, a tube based model predictive controller is employed, which ensures satisfaction of constraints and input-to-state stability of the closed-loop states.