Abstract:A mangrove mapping (MM) algorithm is an essential classification tool for environmental monitoring. The recent literature shows that compared with other index-based MM methods that treat pixels as spatially independent, convolutional neural networks (CNNs) are crucial for leveraging spatial continuity information, leading to improved classification performance. In this work, we go a step further to show that quantum features provide radically new information for CNN to further upgrade the classification results. Simply speaking, CNN computes affine-mapping features, while quantum neural network (QNN) offers unitary-computing features, thereby offering a fresh perspective in the final decision-making (classification). To address the challenging MM problem, we design an entangled spatial-spectral quantum feature extraction module. Notably, to ensure that the quantum features contribute genuinely novel information (unaffected by traditional CNN features), we design a separate network track consisting solely of quantum neurons with built-in interpretability. The extracted pure quantum information is then fused with traditional feature information to jointly make the final decision. The proposed quantum-empowered deep network (QEDNet) is very lightweight, so the improvement does come from the cooperation between CNN and QNN (rather than parameter augmentation). Extensive experiments will be conducted to demonstrate the superiority of QEDNet.
Abstract:Hyperspectral dehazing (HyDHZ) has become a crucial signal processing technology to facilitate the subsequent identification and classification tasks, as the airborne visible/infrared imaging spectrometer (AVIRIS) data portal reports a massive portion of haze-corrupted areas in typical hyperspectral remote sensing images. The idea of inverse problem transform (IPT) has been proposed in recent remote sensing literature in order to reformulate a hardly tractable inverse problem (e.g., HyDHZ) into a relatively simple one. Considering the emerging spectral super-resolution (SSR) technique, which spectrally upsamples multispectral data to hyperspectral data, we aim to solve the challenging HyDHZ problem by reformulating it as an SSR problem. Roughly speaking, the proposed algorithm first automatically selects some uncorrupted/informative spectral bands, from which SSR is applied to spectrally upsample the selected bands in the feature space, thereby obtaining a clean hyperspectral image (HSI). The clean HSI is then further refined by a deep transformer network to obtain the final dehazed HSI, where a global attention mechanism is designed to capture nonlocal information. There are very few HyDHZ works in existing literature, and this article introduces the powerful spatial-spectral transformer into HyDHZ for the first time. Remarkably, the proposed transformer-driven IPT-based HyDHZ (T2HyDHZ) is a blind algorithm without requiring the user to manually select the corrupted region. Extensive experiments demonstrate the superiority of T2HyDHZ with less color distortion.