Abstract:Student mental health is a sensitive issue that necessitates special attention. A primary concern is the student-to-counselor ratio, which surpasses the recommended standard of 250:1 in most universities. This imbalance results in extended waiting periods for in-person consultations, which cause suboptimal treatment. Significant efforts have been directed toward developing mental health dialogue systems utilizing the existing open-source mental health-related datasets. However, currently available datasets either discuss general topics or various strategies that may not be viable for direct application due to numerous ethical constraints inherent in this research domain. To address this issue, this paper introduces a specialized mental health dataset that emphasizes the active listening strategy employed in conversation for counseling, also named as ConvCounsel. This dataset comprises both speech and text data, which can facilitate the development of a reliable pipeline for mental health dialogue systems. To demonstrate the utility of the proposed dataset, this paper also presents the NYCUKA, a spoken mental health dialogue system that is designed by using the ConvCounsel dataset. The results show the merit of using this dataset.
Abstract:Our research introduces an innovative Natural Language Generation (NLG) approach that aims to optimize user experience and alleviate the workload of human customer support agents. Our primary objective is to generate informal summaries for online articles and posts using an offline reinforcement learning technique. In our study, we compare our proposed method with existing approaches to text generation and provide a comprehensive overview of our architectural design, which incorporates crawling, reinforcement learning, and text generation modules. By presenting this original approach, our paper makes a valuable contribution to the field of NLG by offering a fresh perspective on generating natural language summaries for online content. Through the implementation of Empowering NLG, we are able to generate higher-quality replies in the online domain. The experimental results demonstrate a significant improvement in the average "like" score, increasing from 0.09954378 to 0.5000152. This advancement has the potential to enhance the efficiency and effectiveness of customer support services and elevate the overall user experience when consuming online content.