Abstract:At the beginning of 2020 the world has seen the initial outbreak of COVID-19, a disease caused by SARS-CoV2 virus in China. The World Health Organization (WHO) declared this disease as a pandemic on March 11 2020. As the disease spread globally, it becomes difficult to tract the transmission dynamics of this disease in all countries, as they may differ in geographical, demographic and strategical aspects. In this short note, the author proposes the utilization of a type of neural network to generate a global topological map for these dynamics, in which countries that share similar dynamics are mapped adjacently, while countries with significantly different dynamics are mapped far from each other. The author believes that this kind of topological map can be useful for further analyzing and comparing the correlation between the diseases dynamics with strategies to mitigate this global crisis in an intuitive manner. Some initial experiments with with time series of patients numbers in more than 240 countries are explained in this note.
Abstract:In this short paper, a neural network that is able to form a low dimensional topological hidden representation is explained. The neural network can be trained as an autoencoder, a classifier or mix of both, and produces different low dimensional topological map for each of them. When it is trained as an autoencoder, the inherent topological structure of the data can be visualized, while when it is trained as a classifier, the topological structure is further constrained by the concept, for example the labels the data, hence the visualization is not only structural but also conceptual. The proposed neural network significantly differ from many dimensional reduction models, primarily in its ability to execute both supervised and unsupervised dimensional reduction. The neural network allows multi perspective visualization of the data, and thus giving more flexibility in data analysis. This paper is supported by preliminary but intuitive visualization experiments.
Abstract:Visualizing high dimensional data by projecting them into two or three dimensional space is one of the most effective ways to intuitively understand the data's underlying characteristics, for example their class neighborhood structure. While data visualization in low dimensional space can be efficient for revealing the data's underlying characteristics, classifying a new sample in the reduced-dimensional space is not always beneficial because of the loss of information in expressing the data. It is possible to classify the data in the high dimensional space, while visualizing them in the low dimensional space, but in this case, the visualization is often meaningless because it fails to illustrate the underlying characteristics that are crucial for the classification process. In this paper, the performance-preserving property of the previously proposed Restricted Radial Basis Function Network in reducing the dimension of labeled data is explained. Here, it is argued through empirical experiments that the internal representation of the Restricted Radial Basis Function Network, which during the supervised learning process organizes a visualizable two dimensional map, does not only preserve the topographical structure of high dimensional data but also captures their class neighborhood structures that are important for classifying them. Hence, unlike many of the existing dimension reduction methods, the Restricted Radial Basis Function Network offers two dimensional visualization that is strongly correlated with the classification process.
Abstract:In this study we want to connect our previously proposed context-relevant topographical maps with the deep learning community. Our architecture is a classifier with hidden layers that are hierarchical two-dimensional topographical maps. These maps differ from the conventional self-organizing maps in that their organizations are influenced by the context of the data labels in a top-down manner. In this way bottom-up and top-down learning are combined in a biologically relevant representational learning setting. Compared to our previous work, we are here specifically elaborating the model in a more challenging setting compared to our previous experiments and to advance more hidden representation layers to bring our discussions into the context of deep representational learning.