Abstract:Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
Abstract:Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feed-forward, convolutional, and graph neural network examples.