Abstract:Entropic optimal transport problems play an increasingly important role in machine learning and generative modelling. In contrast with optimal transport maps which often have limited applicability in high dimensions, Schrodinger bridges can be solved using the celebrated Sinkhorn's algorithm, a.k.a. the iterative proportional fitting procedure. The stability properties of Sinkhorn bridges when the number of iterations tends to infinity is a very active research area in applied probability and machine learning. Traditional proofs of convergence are mainly based on nonlinear versions of Perron-Frobenius theory and related Hilbert projective metric techniques, gradient descent, Bregman divergence techniques and Hamilton-Jacobi-Bellman equations, including propagation of convexity profiles based on coupling diffusions by reflection methods. The objective of this review article is to present, in a self-contained manner, recently developed Sinkhorn/Gibbs-type semigroup analysis based upon contraction coefficients and Lyapunov-type operator-theoretic techniques. These powerful, off-the-shelf semigroup methods are based upon transportation cost inequalities (e.g. log-Sobolev, Talagrand quadratic inequality, curvature estimates), $φ$-divergences, Kantorovich-type criteria and Dobrushin contraction-type coefficients on weighted Banach spaces as well as Wasserstein distances. This novel semigroup analysis allows one to unify and simplify many arguments in the stability of Sinkhorn algorithm. It also yields new contraction estimates w.r.t. generalized $φ$-entropies, as well as weighted total variation norms, Kantorovich criteria and Wasserstein distances.
Abstract:Entropic optimal transport problems are regularized versions of optimal transport problems. These models play an increasingly important role in machine learning and generative modelling. For finite spaces, these problems are commonly solved using Sinkhorn algorithm (a.k.a. iterative proportional fitting procedure). However, in more general settings the Sinkhorn iterations are based on nonlinear conditional/conjugate transformations and exact finite-dimensional solutions cannot be computed. This article presents a finite-dimensional recursive formulation of the iterative proportional fitting procedure for general Gaussian multivariate models. As expected, this recursive formulation is closely related to the celebrated Kalman filter and related Riccati matrix difference equations, and it yields algorithms that can be implemented in practical settings without further approximations. We extend this filtering methodology to develop a refined and self-contained convergence analysis of Gaussian Sinkhorn algorithms, including closed form expressions of entropic transport maps and Schr\"odinger bridges.