Abstract:For the use of 6D pose estimation in robotic applications, reliable poses are of utmost importance to ensure a safe, reliable and predictable operational performance. Despite these requirements, state-of-the-art 6D pose estimators often do not provide any uncertainty quantification for their pose estimates at all, or if they do, it has been shown that the uncertainty provided is only weakly correlated with the actual true error. To address this issue, we investigate a simple but effective uncertainty quantification, that we call MaskVal, which compares the pose estimates with their corresponding instance segmentations by rendering and does not require any modification of the pose estimator itself. Despite its simplicity, MaskVal significantly outperforms a state-of-the-art ensemble method on both a dataset and a robotic setup. We show that by using MaskVal, the performance of a state-of-the-art 6D pose estimator is significantly improved towards a safe and reliable operation. In addition, we propose a new and specific approach to compare and evaluate uncertainty quantification methods for 6D pose estimation in the context of robotic manipulation.
Abstract:Despite the advances in robotics a large proportion of the of parts handling tasks in the automotive industry's internal logistics are not automated but still performed by humans. A key component to competitively automate these processes is a 6D pose estimation that can handle a large number of different parts, is adaptable to new parts with little manual effort, and is sufficiently accurate and robust with respect to industry requirements. In this context, the question arises as to the current status quo with respect to these measures. To address this we built a representative 6D pose estimation pipeline with state-of-the-art components from economically scalable real to synthetic data generation to pose estimators and evaluated it on automotive parts with regards to a realistic sequencing process. We found that using the data generation approaches, the performance of the trained 6D pose estimators are promising, but do not meet industry requirements. We reveal that the reason for this is the inability of the estimators to provide reliable uncertainties for their poses, rather than the ability of to provide sufficiently accurate poses. In this context we further analyzed how RGB- and RGB-D-based approaches compare against this background and show that they are differently vulnerable to the domain gap induced by synthetic data.