Bloomberg LP
Abstract:We present an architecture for information extraction from text that augments an existing parser with a character-level neural network. The network is trained using a measure of consistency of extracted data with existing databases as a form of noisy supervision. Our architecture combines the ability of constraint-based information extraction systems to easily incorporate domain knowledge and constraints with the ability of deep neural networks to leverage large amounts of data to learn complex features. Boosting the existing parser's precision, the system led to large improvements over a mature and highly tuned constraint-based production information extraction system used at Bloomberg for financial language text.
Abstract:Detecting and quantifying anomalies in urban traffic is critical for real-time alerting or re-routing in the short run and urban planning in the long run. We describe a two-step framework that achieves these two goals in a robust, fast, online, and unsupervised manner. First, we adapt stable principal component pursuit to detect anomalies for each road segment. This allows us to pinpoint traffic anomalies early and precisely in space. Then we group the road-level anomalies across time and space into meaningful anomaly events using a simple graph expansion procedure. These events can be easily clustered, visualized, and analyzed by urban planners. We demonstrate the effectiveness of our system using 7 weeks of anonymized and aggregated cellular location data in Dallas-Fort Worth. We suggest potential opportunities for urban planners and policy makers to use our methodology to make informed changes. These applications include real-time re-routing of traffic in response to abnormally high traffic, or identifying candidates for high-impact infrastructure projects.