Abstract:Quadratic Unconstrained Binary Optimization (QUBO) sits at the heart of many industries and academic fields such as logistics, supply chain, finance, pharmaceutical science, chemistry, IT, and energy sectors, among others. These problems typically involve optimizing a large number of binary variables, which makes finding exact solutions exponentially more difficult. Consequently, most QUBO problems are classified as NP-hard. To address this challenge, we developed a powerful feedforward neural network (FNN) optimizer for arbitrary QUBO problems. In this work, we demonstrate that the FNN optimizer can provide high-quality approximate solutions for large problems, including dense 80-variable weighted MaxCut and random QUBOs, achieving an average accuracy of over 99% in less than 1.1 seconds on an 8-core CPU. Additionally, the FNN optimizer outperformed the Gurobi optimizer by 72% on 200-variable random QUBO problems within a 100-second computation time limit, exhibiting strong potential for real-time optimization tasks. Building on this model, we explored the novel approach of integrating FNNs with a quantum annealer-based activation function to create a quantum-classical encoder-decoder (QCED) optimizer, aiming to further enhance the performance of FNNs in QUBO optimization.