Abstract:The paper presents a new balanced selection operator applied to the proposed Balanced Non-dominated Tournament Genetic Algorithm (B-NTGA) that actively uses archive to solve multi- and many-objective NP-hard combinatorial optimization problems with constraints. The primary motivation is to make B-NTGA more efficient in exploring Pareto Front Approximation (PFa), focusing on 'gaps' and reducing some PFa regions' sampling too frequently. Such a balancing mechanism allows B-NTGA to be more adaptive and focus on less explored PFa regions. The proposed B-NTGA is investigated on two benchmark multi- and many-objective optimization real-world problems, like Thief Traveling Problem and Multi-Skill Resource-Constrained Project Scheduling Problem. The results of experiments show that B-NTGA has a higher efficiency and better performance than state-of-the-art methods.
Abstract:In this paper Hybrid Ant Colony Optimization (HAntCO) approach in solving Multi--Skill Resource Constrained Project Scheduling Problem (MS--RCPSP) has been presented. We have proposed hybrid approach that links classical heuristic priority rules for project scheduling with Ant Colony Optimization (ACO). Furthermore, a novel approach for updating pheromone value has been proposed, based on both the best and worst solutions stored by ants. The objective of this paper is to research the usability and robustness of ACO and its hybrids with priority rules in solving MS--RCPSP. Experiments have been performed using artificially created dataset instances, based on real--world ones. We published those instances that can be used as a benchmark. Presented results show that ACO--based hybrid method is an efficient approach. More directed search process by hybrids makes this approach more stable and provides mostly better results than classical ACO.