Abstract:Topological magnetic textures observed in experiments can, in principle, be predicted by theoretical calculations and numerical simulations. However, such calculations are, in general, hampered by difficulties in distinguishing between local and global energy minima. This becomes particularly problematic for magnetic materials that allow for a multitude of topological charges. Finding solutions to such problems by means of classical numerical methods can be challenging because either a good initial guess or a gigantic amount of random sampling is required. In this study, we demonstrate an efficient way to identify those metastable configurations by leveraging the power of gradient descent-based optimization within the framework of a feedforward neural network combined with a heuristic meta-search, which is driven by a random perturbation of the neural network's input. We exemplify the power of the method by an analysis of the Pd/Fe/Ir(111) system, an experimentally well characterized system.