Abstract:Large vessel occlusion (LVO) plays an important role in the diagnosis of acute ischemic stroke. Identifying LVO of patients in the early stage on admission would significantly lower the probabilities of suffering from severe effects due to stroke or even save their lives. In this paper, we utilized both structural and imaging data from all recorded acute ischemic stroke patients in Hong Kong. Total 300 patients (200 training and 100 testing) are used in this study. We established three hierarchical models based on demographic data, clinical data and features obtained from computerized tomography (CT) scans. The first two stages of modeling are merely based on demographic and clinical data. Besides, the third model utilized extra CT imaging features obtained from deep learning model. The optimal cutoff is determined at the maximal Youden index based on 10-fold cross-validation. With both clinical and imaging features, the Level-3 model achieved the best performance on testing data. The sensitivity, specificity, Youden index, accuracy and area under the curve (AUC) are 0.930, 0.684, 0.614, 0.790 and 0.850 respectively.
Abstract:The hyperdense middle cerebral artery (MCA) dot sign has been reported as an important factor in the diagnosis of acute ischemic stroke due to large vessel occlusion. Interpreting the initial CT brain scan in these patients requires high level of expertise, and has high inter-observer variability. An automated computerized interpretation of the urgent CT brain image, with an emphasis to pick up early signs of ischemic stroke will facilitate early patient diagnosis, triage, and shorten the door-to-revascularization time for these group of patients. In this paper, we present an automated detection method of segmenting the MCA dot sign on non-contrast CT brain image scans based on powerful deep learning technique.