Abstract:Wearable devices are increasingly used as tools for biomedical research, as the continuous stream of behavioral and physiological data they collect can provide insights about our health in everyday contexts. Long-term tracking, defined in the timescale of months of year, can provide insights of patterns and changes as indicators of health changes. These insights can make medicine and healthcare more predictive, preventive, personalized, and participative (The 4P's). However, the challenges in modeling, understanding and processing longitudinal data are a significant barrier to their adoption in research studies and clinical settings. In this paper, we review and discuss three models used to make sense of longitudinal data: routines, rhythms and stability metrics. We present the challenges associated with the processing and analysis of longitudinal wearable sensor data, with a special focus on how to handle the different temporal dynamics at various granularities. We then discuss current limitations and identify directions for future work. This review is essential to the advancement of computational modeling and analysis of longitudinal sensor data for pervasive healthcare.
Abstract:Complex activity recognition can benefit from understanding the steps that compose them. Current datasets, however, are annotated with one label only, hindering research in this direction. In this paper, we describe a new dataset for sensor-based activity recognition featuring macro and micro activities in a cooking scenario. Three sensing systems measured simultaneously, namely a motion capture system, tracking 25 points on the body; two smartphone accelerometers, one on the hip and the other one on the forearm; and two smartwatches one on each wrist. The dataset is labeled for both the recipes (macro activities) and the steps (micro activities). We summarize the results of a baseline classification using traditional activity recognition pipelines. The dataset is designed to be easily used to test and develop activity recognition approaches.