Abstract:With a motive of ubiquitous connectivity over the globe with enhanced spectral efficiency, intelligent reflecting surfaces (IRS) integrated satellite-terrestrial communications is a topic of research interest in an infrastructure-deficient remote terrains. In line with this vision, this paper entails the performance analysis of satellite-terrestrial networks leveraging both aerial and terrestrial IRS nodes, with the support of high altitude platforms over diverse fading channels including shadowed Rician, Rician, and Nakagami-$m$ fading channels. The merits of IRS in enhancing spectral efficiency is analyzed through closed-form expressions of outage probability and ergodic rate. Further, the average symbol error rate analysis for the higher-order quadrature amplitude modulation (QAM) schemes such as hexagonal QAM, rectangular QAM, cross QAM, and square QAM is performed. Practical constraints like antenna gains, path loss, and link fading are considered to characterize the satellite terrestrial links. Finally, a comparison between the high-altitude platforms based IRS node and terrestrial IRS nodes is performed and various insights are drawn under various fading scenarios and path loss conditions. This paper contribute towards understanding and potential implementation of IRS-integrated satellite-terrestrial networks for efficient and reliable communication.
Abstract:With the advent of 5G and the need for energy-efficient massively connected wireless networks, in this work, we consider an energy harvesting (EH) based multi-relay downlink cooperative non-orthogonal multiple access (NOMA) system with practical constraints. The base station serves NOMA users with the help of decode-and-forward based multiple EH relays, where relays harvest the energy from the base station's radio frequency. A relay is selected from the multiple K-relay by using a partial relay selection protocol. The system is considered to operate in half-duplex mode over a generalized independent and identical Nakagami$-m$ fading channel. The closed-form expression of outage probability and ergodic rate are derived for users, under the assumption of imperfect channel state information (CSI) and imperfect successive interference cancellation (SIC) at the receiver node. Expression of outage probability and ergodic rate for both users under the assumption of perfect CSI and perfect SIC are also presented. Further, the asymptotic expression for the outage probability is also shown. The derived analytical expressions are verified through Monte-Carlo simulations.