Abstract:This study utilizes the advanced capabilities of the GPT-4 multimodal Large Language Model (LLM) to explore its potential in iris recognition - a field less common and more specialized than face recognition. By focusing on this niche yet crucial area, we investigate how well AI tools like ChatGPT can understand and analyze iris images. Through a series of meticulously designed experiments employing a zero-shot learning approach, the capabilities of ChatGPT-4 was assessed across various challenging conditions including diverse datasets, presentation attacks, occlusions such as glasses, and other real-world variations. The findings convey ChatGPT-4's remarkable adaptability and precision, revealing its proficiency in identifying distinctive iris features, while also detecting subtle effects like makeup on iris recognition. A comparative analysis with Gemini Advanced - Google's AI model - highlighted ChatGPT-4's better performance and user experience in complex iris analysis tasks. This research not only validates the use of LLMs for specialized biometric applications but also emphasizes the importance of nuanced query framing and interaction design in extracting significant insights from biometric data. Our findings suggest a promising path for future research and the development of more adaptable, efficient, robust and interactive biometric security solutions.
Abstract:Iris segmentation is a critical component of an iris biometric system and it involves extracting the annular iris region from an ocular image. In this work, we develop a pixel-level iris segmentation model from a foundational model, viz., Segment Anything Model (SAM), that has been successfully used for segmenting arbitrary objects. The primary contribution of this work lies in the integration of different loss functions during the fine-tuning of SAM on ocular images. In particular, the importance of Focal Loss is borne out in the fine-tuning process since it strategically addresses the class imbalance problem (i.e., iris versus non-iris pixels). Experiments on ND-IRIS-0405, CASIA-Iris-Interval-v3, and IIT-Delhi-Iris datasets convey the efficacy of the trained model for the task of iris segmentation. For instance, on the ND-IRIS-0405 dataset, an average segmentation accuracy of 99.58% was achieved, compared to the best baseline performance of 89.75%.