Abstract:Machine Learning (ML) has gained popularity in actuarial research and insurance industrial applications. However, the performance of most ML tasks heavily depends on data preprocessing, model selection, and hyperparameter optimization, which are considered to be intensive in terms of domain knowledge, experience, and manual labor. Automated Machine Learning (AutoML) aims to automatically complete the full life-cycle of ML tasks and provides state-of-the-art ML models without human intervention or supervision. This paper introduces an AutoML workflow that allows users without domain knowledge or prior experience to achieve robust and effortless ML deployment by writing only a few lines of code. This proposed AutoML is specifically tailored for the insurance application, with features like the balancing step in data preprocessing, ensemble pipelines, and customized loss functions. These features are designed to address the unique challenges of the insurance domain, including the imbalanced nature of common insurance datasets. The full code and documentation are available on the GitHub repository. (https://github.com/PanyiDong/InsurAutoML)
Abstract:The report demonstrates the benefits (in terms of improved claims loss modeling) of harnessing the value of Federated Learning (FL) to learn a single model across multiple insurance industry datasets without requiring the datasets themselves to be shared from one company to another. The application of FL addresses two of the most pressing concerns: limited data volume and data variety, which are caused by privacy concerns, the rarity of claim events, the lack of informative rating factors, etc.. During each round of FL, collaborators compute improvements on the model using their local private data, and these insights are combined to update a global model. Such aggregation of insights allows for an increase to the effectiveness in forecasting claims losses compared to models individually trained at each collaborator. Critically, this approach enables machine learning collaboration without the need for raw data to leave the compute infrastructure of each respective data owner. Additionally, the open-source framework, OpenFL, that is used in our experiments is designed so that it can be run using confidential computing as well as with additional algorithmic protections against leakage of information via the shared model updates. In such a way, FL is implemented as a privacy-enhancing collaborative learning technique that addresses the challenges posed by the sensitivity and privacy of data in traditional machine learning solutions. This paper's application of FL can also be expanded to other areas including fraud detection, catastrophe modeling, etc., that have a similar need to incorporate data privacy into machine learning collaborations. Our framework and empirical results provide a foundation for future collaborations among insurers, regulators, academic researchers, and InsurTech experts.