Abstract:This research paper focuses on the development and evaluation of Automatic Speech Recognition (ASR) technology using the XLS-R 300m model. The study aims to improve ASR performance in converting spoken language into written text, specifically for Indonesian, Javanese, and Sundanese languages. The paper discusses the testing procedures, datasets used, and methodology employed in training and evaluating the ASR systems. The results show that the XLS-R 300m model achieves competitive Word Error Rate (WER) measurements, with a slight compromise in performance for Javanese and Sundanese languages. The integration of a 5-gram KenLM language model significantly reduces WER and enhances ASR accuracy. The research contributes to the advancement of ASR technology by addressing linguistic diversity and improving performance across various languages. The findings provide insights into optimizing ASR accuracy and applicability for diverse linguistic contexts.
Abstract:This study focuses on the development of Indonesian Automatic Speech Recognition (ASR) using the XLSR-53 pre-trained model, the XLSR stands for cross-lingual speech representations. The use of this XLSR-53 pre-trained model is to significantly reduce the amount of training data in non-English languages required to achieve a competitive Word Error Rate (WER). The total amount of data used in this study is 24 hours, 18 minutes, and 1 second: (1) TITML-IDN 14 hours and 31 minutes; (2) Magic Data 3 hours and 33 minutes; and (3) Common Voice 6 hours, 14 minutes, and 1 second. With a WER of 20%, the model built in this study can compete with similar models using the Common Voice dataset split test. WER can be decreased by around 8% using a language model, resulted in WER from 20% to 12%. Thus, the results of this study have succeeded in perfecting previous research in contributing to the creation of a better Indonesian ASR with a smaller amount of data.