Abstract:In wideband systems operating at mmWave frequencies, intelligent reflecting surfaces (IRSs) equipped with many passive elements can compensate for channel propagation losses. Then, a phenomenon known as the beam-split (B-SP) occurs in which the phase shifters at the IRS elements fail to beamform at a desired user equipment (UE) over the total allotted bandwidth (BW). Although B-SP is usually seen as an impairment, in this paper, we take an optimistic view and exploit the B-SP effect to enhance the system performance via an orthogonal frequency division multiple access (OFDMA). We argue that due to the B-SP, when an IRS is tuned to beamform at a particular angle on one frequency, it also forms beams in different directions on other frequencies. Then, by opportunistically scheduling different UEs on different subcarriers (SCs), we show that, almost surely, the optimal array gain that scales quadratically in the number of IRS elements can be achieved on all SCs in the system. We derive the achievable throughput of the proposed scheme and deduce that the system also enjoys additional multi-user diversity benefits on top of the optimal beamforming gain over the full BW. Finally, we verify our findings via numerical simulations.