Abstract:COVID-19 appeared abruptly in early 2020, requiring a rapid response amid a context of great uncertainty. Good quality data and knowledge was initially lacking, and many early models had to be developed with causal assumptions and estimations built in to supplement limited data, often with no reliable approach for identifying, validating and documenting these causal assumptions. Our team embarked on a knowledge engineering process to develop a causal knowledge base consisting of several causal BNs for diverse aspects of COVID-19. The unique challenges of the setting lead to experiments with the elicitation approach, and what emerged was a knowledge engineering method we call Causal Knowledge Engineering (CKE). The CKE provides a structured approach for building a causal knowledge base that can support the development of a variety of application-specific models. Here we describe the CKE method, and use our COVID-19 work as a case study to provide a detailed discussion and analysis of the method.
Abstract:The typical phases of Bayesian network (BN) structured development include specification of purpose and scope, structure development, parameterisation and validation. Structure development is typically focused on qualitative issues and parameterisation quantitative issues, however there are qualitative and quantitative issues that arise in both phases. A common step that occurs after the initial structure has been developed is to perform a rough parameterisation that only captures and illustrates the intended qualitative behaviour of the model. This is done prior to a more rigorous parameterisation, ensuring that the structure is fit for purpose, as well as supporting later development and validation. In our collective experience and in discussions with other modellers, this step is an important part of the development process, but is under-reported in the literature. Since the practice focuses on qualitative issues, despite being quantitative in nature, we call this step qualitative parameterisation and provide an outline of its role in the BN development process.