Abstract:We present a neural network-enhanced column generation (CG) approach for a parallel machine scheduling problem. The proposed approach utilizes an encoder-decoder attention model, namely the transformer and pointer architectures, to develop job sequences with negative reduced cost and thus generate columns to add to the master problem. By training the neural network offline and using it in inference mode to predict negative reduced costs columns, we achieve significant computational time savings compared to dynamic programming (DP). Since the exact DP procedure is used to verify that no further columns with negative reduced cost can be identified at termination, the optimality guarantee of the original CG procedure is preserved. For small to medium-sized instances, our approach achieves an average 45% reduction in computation time compared to solving the subproblems with DP. Furthermore, the model generalizes not only to unseen, larger problem instances from the same probability distribution but also to instances from different probability distributions than those presented at training time. For large-sized instances, the proposed approach achieves an 80% improvement in the objective value in under 500 seconds, demonstrating both its scalability and efficiency.