Abstract:3D image segmentation is a recent and crucial step in many medical analysis and recognition schemes. In fact, it represents a relevant research subject and a fundamental challenge due to its importance and influence. This paper provides a multi-phase Deep Learning-based system that hybridizes various efficient methods in order to get the best 3D segmentation output. First, to reduce the amount of data and accelerate the processing time, the application of Decimate compression technique is suggested and justified. We then use a CNN model to segment dental images into fifteen separated classes. In the end, a special KNN-based transformation is applied for the purpose of removing isolated meshes and of correcting dental forms. Experimentations demonstrate the precision and the robustness of the selected framework applied to 3D dental images within a private clinical benchmark.
Abstract:Document image binarization is the initial step and a crucial in many document analysis and recognition scheme. In fact, it is still a relevant research subject and a fundamental challenge due to its importance and influence. This paper provides an original multi-phases system that hybridizes various efficient image thresholding methods in order to get the best binarization output. First, to improve contrast in particularly defective images, the application of CLAHE algorithm is suggested and justified. We then use a cooperative technique to segment image into two separated classes. At the end, a special transformation is applied for the purpose of removing scattered noise and of correcting characters forms. Experimentations demonstrate the precision and the robustness of our framework applied on historical degraded documents images within three benchmarks compared to other noted methods.