Abstract:Effective detection of road hazards plays a pivotal role in road infrastructure maintenance and ensuring road safety. This research paper provides a comprehensive evaluation of YOLOv8, an object detection model, in the context of detecting road hazards such as potholes, Sewer Covers, and Man Holes. A comparative analysis with previous iterations, YOLOv5 and YOLOv7, is conducted, emphasizing the importance of computational efficiency in various applications. The paper delves into the architecture of YOLOv8 and explores image preprocessing techniques aimed at enhancing detection accuracy across diverse conditions, including variations in lighting, road types, hazard sizes, and types. Furthermore, hyperparameter tuning experiments are performed to optimize model performance through adjustments in learning rates, batch sizes, anchor box sizes, and augmentation strategies. Model evaluation is based on Mean Average Precision (mAP), a widely accepted metric for object detection performance. The research assesses the robustness and generalization capabilities of the models through mAP scores calculated across the diverse test scenarios, underlining the significance of YOLOv8 in road hazard detection and infrastructure maintenance.
Abstract:In machining processes, monitoring the condition of the tool is a crucial aspect to ensure high productivity and quality of the product. Using different machine learning techniques in Tool Condition Monitoring TCM enables a better analysis of the large amount of data of different signals acquired during the machining processes. The real time force signals encountered during the process were acquired by performing numerous experiments. Different tool wear conditions were considered during the experimentation. A comprehensive statistical analysis of the data and feature selection using decision trees was conducted, and the KNN algorithm was used to perform classification. Hyperparameter tuning of the model was done to improve the models performance. Much research has been done to employ machine learning approaches in tool condition monitoring systems, however, a model agnostic approach to increase the interpretability of the process and get an in depth understanding of how the decision making is done is not implemented by many. This research paper presents a KNN based white box model, which allows us to dive deep into how the model performs the classification and how it prioritizes the different features included. This approach helps in detecting why the tool is in a certain condition and allows the manufacturer to make an informed decision about the tools maintenance.