Abstract:As acquiring reliable ground-truth labels is usually costly, or infeasible, crowdsourcing and aggregation of noisy human annotations is the typical resort. Aggregating subjective labels, though, may amplify individual biases, particularly regarding sensitive features, raising fairness concerns. Nonetheless, fairness in crowdsourced aggregation remains largely unexplored, with no existing convergence guarantees and only limited post-processing approaches for enforcing $\varepsilon$-fairness under demographic parity. We address this gap by analyzing the fairness s of crowdsourced aggregation methods within the $\varepsilon$-fairness framework, for Majority Vote and Optimal Bayesian aggregation. In the small-crowd regime, we derive an upper bound on the fairness gap of Majority Vote in terms of the fairness gaps of the individual annotators. We further show that the fairness gap of the aggregated consensus converges exponentially fast to that of the ground-truth under interpretable conditions. Since ground-truth itself may still be unfair, we generalize a state-of-the-art multiclass fairness post-processing algorithm from the continuous to the discrete setting, which enforces strict demographic parity constraints to any aggregation rule. Experiments on synthetic and real datasets demonstrate the effectiveness of our approach and corroborate the theoretical insights.
Abstract:Predictive maintenance of railway infrastructure, especially railroads, is essential to ensure safety. However, accurate prediction of crack evolution represents a major challenge due to the complex interactions between intrinsic and external factors, as well as measurement uncertainties. Effective modeling requires a multidimensional approach and a comprehensive understanding of these dynamics and uncertainties. Motivated by an industrial use case based on collected real data containing measured crack lengths, this paper introduces a robust Bayesian multi-horizon approach for predicting the temporal evolution of crack lengths on rails. This model captures the intricate interplay between various factors influencing crack growth. Additionally, the Bayesian approach quantifies both epistemic and aleatoric uncertainties, providing a confidence interval around predictions. To enhance the model's reliability for railroad maintenance, specific constraints are incorporated. These constraints limit non-physical crack propagation behavior and prioritize safety. The findings reveal a trade-off between prediction accuracy and constraint compliance, highlighting the nuanced decision-making process in model training. This study offers insights into advanced predictive modeling for dynamic temporal forecasting, particularly in railway maintenance, with potential applications in other domains.
Abstract:The prediction of rail crack length propagation plays a crucial role in the maintenance and safety assessment of materials and structures. Traditional methods rely on physical models and empirical equations such as Paris law, which often have limitations in capturing the complex nature of crack growth. In recent years, machine learning techniques, particularly Recurrent Neural Networks (RNNs), have emerged as promising methods for time series forecasting. They allow to model time series data, and to incorporate exogenous variables into the model. The proposed approach involves collecting real data on the French rail network that includes historical crack length measurements, along with relevant exogenous factors that may influence crack growth. First, a pre-processing phase was performed to prepare a consistent data set for learning. Then, a suitable Bayesian multi-horizons recurrent architecture was designed to model the crack propagation phenomenon. Obtained results show that the Multi-horizons model outperforms state-of-the-art models such as LSTM and GRU.