GIPSA-CRISSP
Abstract:Most speech self-supervised learning (SSL) models are trained with a pretext task which consists in predicting missing parts of the input signal, either future segments (causal prediction) or segments masked anywhere within the input (non-causal prediction). Learned speech representations can then be efficiently transferred to downstream tasks (e.g., automatic speech or speaker recognition). In the present study, we investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context, i.e., fulfilling a downstream task that is very similar to the pretext task. To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder. In particular, we propose two solutions to match the HuBERT output with the HiFiGAN input, by freezing one and fine-tuning the other, and vice versa. Performance of both approaches was assessed in single- and multi-speaker settings, for both informed and blind inpainting configurations (i.e., the position of the mask is known or unknown, respectively), with different objective metrics and a perceptual evaluation. Performances show that if both solutions allow to correctly reconstruct signal portions up to the size of 200ms (and even 400ms in some cases), fine-tuning the SSL encoder provides a more accurate signal reconstruction in the single-speaker setting case, while freezing it (and training the neural vocoder instead) is a better strategy when dealing with multi-speaker data.
Abstract:Hard of hearing or profoundly deaf people make use of cued speech (CS) as a communication tool to understand spoken language. By delivering cues that are relevant to the phonetic information, CS offers a way to enhance lipreading. In literature, there have been several studies on the dynamics between the hand and the lips in the context of human production. This article proposes a way to investigate how a neural network learns this relation for a single speaker while performing a recognition task using attention mechanisms. Further, an analysis of the learnt dynamics is utilized to establish the relationship between the two modalities and extract automatic segments. For the purpose of this study, a new dataset has been recorded for French CS. Along with the release of this dataset, a benchmark will be reported for word-level recognition, a novelty in the automatic recognition of French CS.