Abstract:Biometric security is the cornerstone of modern identity verification and authentication systems, where the integrity and reliability of biometric samples is of paramount importance. This paper introduces AttackNet, a bespoke Convolutional Neural Network architecture, meticulously designed to combat spoofing threats in biometric systems. Rooted in deep learning methodologies, this model offers a layered defense mechanism, seamlessly transitioning from low-level feature extraction to high-level pattern discernment. Three distinctive architectural phases form the crux of the model, each underpinned by judiciously chosen activation functions, normalization techniques, and dropout layers to ensure robustness and resilience against adversarial attacks. Benchmarking our model across diverse datasets affirms its prowess, showcasing superior performance metrics in comparison to contemporary models. Furthermore, a detailed comparative analysis accentuates the model's efficacy, drawing parallels with prevailing state-of-the-art methodologies. Through iterative refinement and an informed architectural strategy, AttackNet underscores the potential of deep learning in safeguarding the future of biometric security.
Abstract:Biometric authentication systems are crucial for security, but developing them involves various complexities, including privacy, security, and achieving high accuracy without directly storing pure biometric data in storage. We introduce an innovative image distortion technique that makes facial images unrecognizable to the eye but still identifiable by any custom embedding neural network model. Using the proposed approach, we test the reliability of biometric recognition networks by determining the maximum image distortion that does not change the predicted identity. Through experiments on MNIST and LFW datasets, we assess its effectiveness and compare it based on the traditional comparison metrics.
Abstract:In an era where biometric security serves as a keystone of modern identity verification systems, ensuring the authenticity of these biometric samples is paramount. Liveness detection, the capability to differentiate between genuine and spoofed biometric samples, stands at the forefront of this challenge. This research presents a comprehensive evaluation of liveness detection models, with a particular focus on their performance in cross-database scenarios, a test paradigm notorious for its complexity and real-world relevance. Our study commenced by meticulously assessing models on individual datasets, revealing the nuances in their performance metrics. Delving into metrics such as the Half Total Error Rate, False Acceptance Rate, and False Rejection Rate, we unearthed invaluable insights into the models' strengths and weaknesses. Crucially, our exploration of cross-database testing provided a unique perspective, highlighting the chasm between training on one dataset and deploying on another. Comparative analysis with extant methodologies, ranging from convolutional networks to more intricate strategies, enriched our understanding of the current landscape. The variance in performance, even among state-of-the-art models, underscored the inherent challenges in this domain. In essence, this paper serves as both a repository of findings and a clarion call for more nuanced, data-diverse, and adaptable approaches in biometric liveness detection. In the dynamic dance between authenticity and deception, our work offers a blueprint for navigating the evolving rhythms of biometric security.
Abstract:In the realm of security applications, biometric authentication systems play a crucial role, yet one often encounters challenges concerning privacy and security while developing one. One of the most fundamental challenges lies in avoiding storing biometrics directly in the storage but still achieving decently high accuracy. Addressing this issue, we contribute to both artificial intelligence and engineering fields. We introduce an innovative image distortion technique that effectively renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models. From the theoretical perspective, we explore how reliable state-of-the-art biometrics recognition neural networks are by checking the maximal degree of image distortion, which leaves the predicted identity unchanged. On the other hand, applying this technique demonstrates a practical solution to the engineering challenge of balancing security, precision, and performance in biometric authentication systems. Through experimenting on the widely used datasets, we assess the effectiveness of our method in preserving AI feature representation and distorting relative to conventional metrics. We also compare our method with previously used approaches.