Abstract:Catastrophic forgetting is a significant challenge in the field of machine learning, particularly in neural networks. When a neural network learns to perform well on a new task, it often forgets its previously acquired knowledge or experiences. This phenomenon occurs because the network adjusts its weights and connections to minimize the loss on the new task, which can inadvertently overwrite or disrupt the representations that were crucial for the previous tasks. As a result, the the performance of the network on earlier tasks deteriorates, limiting its ability to learn and adapt to a sequence of tasks. In this paper, we propose a novel method for preventing catastrophic forgetting in machine learning applications, specifically focusing on neural networks. Our approach aims to preserve the knowledge of the network across multiple tasks while still allowing it to learn new information effectively. We demonstrate the effectiveness of our method by conducting experiments on various benchmark datasets, including Split MNIST, Split CIFAR10, Split Fashion MNIST, and Split CIFAR100. These datasets are created by dividing the original datasets into separate, non overlapping tasks, simulating a continual learning scenario where the model needs to learn multiple tasks sequentially without forgetting the previous ones. Our proposed method tackles the catastrophic forgetting problem by incorporating negotiated representations into the learning process, which allows the model to maintain a balance between retaining past experiences and adapting to new tasks. By evaluating our method on these challenging datasets, we aim to showcase its potential for addressing catastrophic forgetting and improving the performance of neural networks in continual learning settings.
Abstract:Overfitting is a phenomenon that occurs when a machine learning model is trained for too long and focused too much on the exact fitness of the training samples to the provided training labels and cannot keep track of the predictive rules that would be useful on the test data. This phenomenon is commonly attributed to memorization of particular samples, memorization of the noise, and forced fitness into a data set of limited samples by using a high number of neurons. While it is true that the model encodes various peculiarities as the training process continues, we argue that most of the overfitting occurs in the process of reconciling sharply defined membership ratios. In this study, we present an approach that increases the classification accuracy of machine learning models by allowing the model to negotiate output representations of the samples with previously determined class labels. By setting up a negotiation between the models interpretation of the inputs and the provided labels, we not only increased average classification accuracy but also decreased the rate of overfitting without applying any other regularization tricks. By implementing our negotiation paradigm approach to several low regime machine learning problems by generating overfitting scenarios from publicly available data sets such as CIFAR 10, CIFAR 100, and MNIST we have demonstrated that the proposed paradigm has more capacity than its intended purpose. We are sharing the experimental results and inviting the machine learning community to explore the limits of the proposed paradigm. We also aim to incentive the community to exploit the negotiation paradigm to overcome the learning related challenges in other research fields such as continual learning. The Python code of the experimental setup is uploaded to GitHub.