Abstract:Comprehensive information on housing stock is crucial for climate adaptation initiatives aiming to reduce the adverse impacts of climate-extreme hazards in high-risk regions like the Caribbean. In this study, we propose a workflow for rapidly generating critical baseline housing stock data using very high-resolution drone images and deep learning techniques. Specifically, our work leverages the Segment Anything Model and convolutional neural networks for the automated generation of building footprints and roof classification maps. By strengthening local capacity within government agencies to leverage AI and Earth Observation-based solutions, this work seeks to improve the climate resilience of the housing sector in small island developing states in the Caribbean.
Abstract:Accurate and up-to-date information on building characteristics is essential for vulnerability assessment; however, the high costs and long timeframes associated with conducting traditional field surveys can be an obstacle to obtaining critical exposure datasets needed for disaster risk management. In this work, we leverage deep learning techniques for the automated classification of roof characteristics from very high-resolution orthophotos and airborne LiDAR data obtained in Dominica following Hurricane Maria in 2017. We demonstrate that the fusion of multimodal earth observation data performs better than using any single data source alone. Using our proposed methods, we achieve F1 scores of 0.93 and 0.92 for roof type and roof material classification, respectively. This work is intended to help governments produce more timely building information to improve resilience and disaster response in the Caribbean.