Abstract:Effective data-driven biomedical discovery requires data curation: a time-consuming process of finding, organizing, distilling, integrating, interpreting, annotating, and validating diverse information into a structured form suitable for databases and knowledge bases. Accurate and efficient curation of these digital assets is critical to ensuring that they are FAIR, trustworthy, and sustainable. Unfortunately, expert curators face significant time and resource constraints. The rapid pace of new information being published daily is exceeding their capacity for curation. Generative AI, exemplified by instruction-tuned large language models (LLMs), has opened up new possibilities for assisting human-driven curation. The design philosophy of agents combines the emerging abilities of generative AI with more precise methods. A curator's tasks can be aided by agents for performing reasoning, searching ontologies, and integrating knowledge across external sources, all efforts otherwise requiring extensive manual effort. Our LLM-driven annotation tool, CurateGPT, melds the power of generative AI together with trusted knowledge bases and literature sources. CurateGPT streamlines the curation process, enhancing collaboration and efficiency in common workflows. Compared to direct interaction with an LLM, CurateGPT's agents enable access to information beyond that in the LLM's training data and they provide direct links to the data supporting each claim. This helps curators, researchers, and engineers scale up curation efforts to keep pace with the ever-increasing volume of scientific data.
Abstract:Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources, necessitating substantial collaborative efforts of domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). This method can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies, as well as unstructured textual sources. We assessed DRAGON-AI across ten diverse ontologies, making use of extensive manual evaluation of results. We demonstrate high precision for relationship generation, close to but lower than precision from logic-based reasoning. We also demonstrate definition generation comparable with but lower than human-generated definitions. Notably, expert evaluators were better able to discern subtle flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues. These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.